

JNIVERSALACADEMY

Icon of Success and Excellence

MOCK CET - 2015

DATE	SUBJECT	TIME	
20.04.2015	PHYSICS	2.30 PM TO 3.40 PM	
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING	
60	80 MINUTES	70 MINUTES	
MENTION YOUR	QUESTION BOOKLET DETAILS		
CET NUMBER	VERSION CODE	SERIAL NUMBER	
	C-2		

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the Invigilator after 1st Bell i.e, after 2.30 p.m
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should be shaded completely.
- 5. Compulsory sign at the bottom portion of the OMR answer sheet in the space provided.

DONTs:

- 1. The timing and marks printed on the OMR answer sheet should not be damaged/mutilated/ spoiled.
- 2. The 2nd Bell rings at 2.35 p.m. till then,
 - Do not remove the seal/staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distraction (four different options / choices).
- 2. After the **2nd Bell** is rung at **2.35 p.m**. Remove the seal/staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options /choices) given under each question/statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE ANSWER SHEET IS AS SHOWN BELOW:

- 4. Please note that even a minute unintended ink dot on the answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR sheet.
- 5. Use the space provided on each page of the question booklet for Rough work. Do not use the OMR answer sheet for the same.
- 6. After the **last bell** is rung at **3.45 pm** stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR answer sheet to the room invigilator as it is.
- 8. After separating and retaining the top sheet, (UA copy) the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE week. For results, log on to the website www.uaes.in 5 days after the examination.

	PHYSICS CET - 2					
1.	body is projected with kinetic energy E such that its range is maximum. Its potential energy at					
		5 h) E/2	c) 2E	d) 1 414 E		
2	A block of woight 50 l	U) L/Z	ugh horizontal surface	(1) 1.4 14 \square		
۷.	the least possible force that can move the block is (in N)					
	a) 100/√2	b) 100 √2	c) 50 √2	d) 50/√2		
3.	A sphere of mass 2m	collides with a statio	nary sphere of mass	3m and stick to it. Then the loss		
	in kinetic energy durir	ng collision is				
	a) 60%	b) 80%	c) 40%	d) 20%		
4.	A particle of mass 1 I	kg is moving with a co	onstant speed of 20 $$	$\overline{2} m s^{-1}$ in the xy plane along the		
	line $y = x + 4$. Angula	r momentum of the pa	article about the origin	is		
	a) -80 <i>k</i>	b) 20î + 20 <i>î</i>	c) 20 <i>ĵ</i>	d) -80ĵ		
5.	A satellite moves are	ound the earth in a	circular orbit with a s	speed of v. If m is mass of the		
	satellite, its total ener	gy is				
	a) $-\frac{1}{2}mv^2$	b) $\frac{1}{2}mv^2$	c) $\frac{3}{2}mv^2$	d) $\frac{1}{2}mv^{2}$		
6	The angle of contact	$\frac{2}{2}$ of a liquid with a solid	doos not dopond on	4		
0.	The angle of contact of a line line angle of the line line line line line line line lin	Ji a liquiu with a solid	ha aalid liquid aufaaa			
	a) The angle of film	liquid and the solid				
	b) The fialure of the	h aviata abaya tha fra	a ourfage of the liquid			
	d) The cleanliness a	nd freebace of the tu				
7	d) The cleaniness and treshness of the two surfaces in contact					
1.		c_n , the pressure	e or a gas is proporti			
	temperature. The value	Le of $\frac{p}{c_v}$ for that gas is				
	a) 3/5	b) 4/3	c) 5/3	d) 3/2		
8.	A very weekly dampe	ed oscillator is acted	upon by an external	periodic force and is executing		
	simple harmonic osci	llations in a steady st	ate. What is the phase	e difference between the applied		
	force and oscillator at	resonance				
	a) Zero	b) $\frac{\pi}{2}$	C) $\frac{\pi}{4}$	d) <i>π</i>		
9.	A car sounding its ho	orn at 480 Hz moves	towards a high wall	at a speed of 20 ms ⁻¹ (speed of		
	sound is 340 ms ⁻¹).	The frequency of the	reflected sound hea	rd by the observer in the car is		
	nearly			-		
	a) 480 Hz	b) 510 Hz	c) 540 Hz	d) 570 Hz		
10.	A empty vessel is par	tially filled with water.	. The frequency of vib	ration of air column in the vessel		
	a) Increases	\mathbf{V}	b) Decreases			
	c) Remains the sam	e	d) Depends on t	the purity of the water		
11.	Sound waves transfe	r				
	a) Momentum		b) Both energy a	and momentum		
	c) Only energy not n	nomentum	d) Energy			
12.	We have a jar A fille	d with gas characteri	sed by the parameter	rs P,V and T another jar B filled		
	with a gas with parar	meters 2P, V/4 and 2	2T where the symbols	s have their usual meaning. The		
	ratio of the number of	molecules of jar A to	those of jar B is			
	a) 1:2	b) 1:4	c) 4:1	d) 2:1		
13.	The best laboratory a	pproximation to an ide	eal black body is			
	a) A lump of charcoa	al heated to high temp	perature			
	b) A glass surface co	pated with coal tar				
	c) A metal coated wi	ith a black dye				
	d) A hollow enclosur	e blackened inside w	ith soot and having a	small hole		
14.	In which process the	PV indicator diagram	is a straight line para	llel to volume axis?		
	a) Isobaric	b) Isothermal	c) Adiabatic	d) Irreversible		

a) Increases b) Decreases c) Remains unchanged d) Increases or decreases according to the nature of the gas 16. Two balls of equal masses are thrown upwards along the same vertical direction at an interval of 2s, with the same initial velocity of 39.2 ms⁻¹. The two balls will collide at a height of b) 73.5 m c) 78.4 m a) 39.2 m d) 117.6 m 17. Physical quantity which remains constant throughout the trajectory of a particle is a) Momentum b) Vertical component of velocity c) Horizontal component of velocity d) Energy 18. The force between two charges 2µC and 4 µC is 24 N when they are separated by a certain distance in free space. The force if (i) distance between them is doubled and (ii) distance is halved are a) 16N, 80N b) 8N, 72N c) 6N, 96N d) 10N, 68N 19. A rod with linear charge density λ is bent in the shape a circular ring. The electric potential at the centre of the circular ring is a) $\frac{\lambda}{4\varepsilon_0}$ d) $\frac{2\lambda}{2\lambda}$ b) $\frac{\lambda}{2\epsilon_0}$ c) $\frac{\lambda}{\varepsilon_0}$ 20. Point charges of 3nC are situated at each of three corners of a square whose side is 15 cm. The magnitude and direction of electric field at the vacant corner of the square i a) 2296 V/m along the diagonal b) 9622 V/m along the diagonal c) 22 V/m along the diagonal d) Zero 21. The capacitance between A and B in the arrangement given below is 3µF 3µF 3µF = 2µF = 2µF = 3µF 3µF 3µF b) 10 μF a) 1 µF c) 50 µF d) 1.5 µF 22. A capacitor of 10 µF charged upto 250 V is connected in parallel with another capacitor of 5 µF charged upto 100 V. The common potential is a) 500 V b) 400 V c) 300 V d) 200 V 23. If a dielectric substance is introduced between the plates of a charged air-gap capacitor, the energy of the capacitor will a) Decrease b) Remains unchanged c) Increase d) First decreases and then increases 24. The terminal potential of a cell is greater than its emf when it is a) Being charged b) An open circuit c) Being discharged d) It never happens 25. Two wires made of same material have their electrical resistances in the ratio 1:4. If their lengths are in the ratio 1:2, the ratio of their masses is b) 1:8 d) 2:1 a) 1:1 c) 8:1 26. The effective resistance between A and B is

15. If the pressure in a closed vessel is reduced by drawing out some of the gas, the mean free path

of the two molecules

a)	$\frac{\mu_0 I}{4} \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$	b) $\frac{\mu_0 I}{4\pi} \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$	c) $\frac{\mu_0 I}{2\pi} \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$	d) $\frac{\mu_0 I}{4} \left[\frac{1}{R_1} + \frac{1}{R_2} \right]$
----	--	--	--	---

34. An isolated north pole of mass 10⁻³ kg and pole strength 20 Am is kept in a uniform magnetic field of induction 4 mT. The acceleration acquired by the pole is ms⁻²
a) 10
b) 80
c) 40
d) 20

35. A magnetic needle lying parallel to a magnetic field required W units of work to turn it through 60° . The torque required to maintain the needle in this position is

- 36. A conductor of resistance 2 ohm and length 0.5 m is moving with a uniform speed of 0.4 m/s perpendicular to a magnetic field of induction 1T. If this is connected to a load resistance of 3 ohm, the current in the circuit is
- a) 0.04 Ab) 0.02 Ac) 0.01 Ad) 0.08 A37. The core of a transformer is laminated to reduce
- a) Hysteresis loss b) Eddy current loss c) Magnetic loss d) Copper loss
- 38. Current in a coil changes from 4A to zero in 0.1 s and the emf induced is 100 V. The self inductance of the coil is

	a) 2.5H	b) 4H	c) 0.25 H	d) 0.4 H
39.	An alternating current	of frequency f is flowing	in a circuit of resistance I	R and coil of inductance
	L in series. The impeda	ance of the circuit is		
	a) $R + 2\pi f I$	b) $\sqrt{R^2 + 4\pi^2 f^2 I^2}$	c) $\sqrt{R^2 + I^2}$	d) $\sqrt{R^2 + 2\pi fI}$
40	The dimensional formu	la of inductance is	O	$d = \sqrt{1} \sqrt{1} \sqrt{1}$
- 0.	a) $[M^{1}I^{2}T^{-1}I^{-2}]$	ha of multicarice is b) $[M^{1}I^{2}T^{-2}I^{-2}]$	c) $[M^{1}I^{2}T^{-2}I^{-2}]$	d) $[M_{12}T_{14-2}]$
11	a) $[M L I A]$	it the voltmeter and am	C) [M L I A]	
41.	In the series LCK circu		meter readings are	
	a) 100V, 2A	b) 100V, 5A	c) K1000V, 2A	d) 300V, 1A
42.	An electromagnetic ra	diation has an energy	of 13.2 keV. Then the r	adiation belongs to the
	region			
	a) Visible region	b) Ultraviolet	c) Infrared	d) X-ray
43.	The velocity of an elect	tromagnetic wave in vac	ouum can changed by char	nging
	a) Frequency	b) Wavelength	c) Amplitude	d) None of these
44.	Mirages are due to			
	a) Refraction of light		b) Total internal reflectio	n of light
	c) Dispersion of light		d) Scattering of light	
45.	The sum of angles of re	efraction inside the prism	n at the two surfaces is (ar	ngle of the prism is A)
	a) Equal to A	b) Less than A	c) Greater than A	d) A/2
46.	The focal length of a	convex lens is 10 cm	n. the magnifying powers	when it is used as a
	magnifying glass to for	m the image at (i) near p	point and (ii) far point are	
	a) 2.5 and 3.5	b) 3.5 and 4.5	c) 4.5 and 3.5	d) 3.5 and 2.5
47.	Two interfering waves	s have amplitudes in t	he ratio 5:1. The ratio c	of the maximum to the
	minimum intensity is			
40	a) 25:1	b) 4:9	c) 6:4	d) 9:4
48.	Sun light is reflected fr	rom a calm lake. The re	flected light is 100% polar	rised at a certail instant.
	The angle between the	sun light and the surfac	the lake is $\left(tan^{-1}\left(\frac{4}{3}\right)\right)$	$= 53^{0}4'$).
	a) 90 ⁰	b) 53 ⁰ 4'	c) 36 ⁰ 56'	d) 45 ⁰
49.	The maximum kinetic of	of the emitted photoelect	rons depends upon:	
	a) The frequency of th	ne incident light		
	b) The velocity of incid	dent light photon		
	c) The intensity of inc	ident light		
	d) The voltage applied	d between the electrode	s of the phtotocell	
50.	The de Broglie waveler	ngth of a gas molecule a	at a temperature T K is,	
	a) $\frac{h}{\sqrt{3mKT}}$	b) $\frac{h}{3mKT}$	C) $\frac{h}{\sqrt{2mKT}}$	d) $\sqrt{2mKT}$
51.	When two protons attra	act each other	V LIILLI	
	a) Distance between t	them is 10⁻ ¹⁰ m	b) Distance between the	m is 10⁻¹ m
	c) Distance between t	them is 10 ⁻¹⁵ m	d) It never happens	
52.	What percentage of the	e original radioactive ato	ms is left after 5 half lives	?
	a) 20%	b) 10%	c) 5%	d) 3%
53.	When the electron has	a transition from the sta	te (n+1) to state n, then fr	equency f of the emitted
	radiation will be inverse	ely proportional to		
	a) n ³	b) n ²	c) n	d) 1/n
54.	Positrons are produced	d during		
	a) Annihilation	b) Pair production	c) Positive rays	d) lonization

55. Solar energy is due to

a) Fusion reactions b) Fission reactions c) Combustion reactions d) Chemical reactions 56. A cell of emf 4.5 V is connected to a junction diode whose barrier potential is 0.7 V. If the

- external resistance in the circuit is 190 ohms, the current in the circuit is a) 20 mA b) 2 mA c) 23 mA d) 200 mA
- 57. To get an output Y=1 from the circuit given below, the inputs must be

a) A=0, B=1, C=0 b) A=1, B=0, C=0 c) A=1, B=0, C=1 d) A=1, B=1, C=0 58. The current through a ideal pn junction shown in the circuit diagram will be

a) Increases b) Decreases c) Remains same d) Become zero