

JNIVERSAL ACADEMY

Icon of Success and Excellence

MOCK CET - 2015

DATE	SUBJECT	TIME	
16.04.2015	PHYSICS	2.30 PM TO 3.40 PM	
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING	
60	80 MINUTES	70 MINUTES	
MENTION YOUR	QUESTION BOOKLET DETAILS		
CET NUMBER	VERSION CODE	SERIAL NUMBER	
	C-1		

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the Invigilator after **1st Bell** i.e, after **2.30 p.m**
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should be shaded completely.
- 5. Compulsory sign at the bottom portion of the OMR answer sheet in the space provided.

DONTs:

- 1. The timing and marks printed on the OMR answer sheet should not be damaged/mutilated/ spoiled.
- 2. The 2nd Bell rings at 2.35 p.m. till then,
 - Do not remove the seal/staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distraction (four different options / choices).
- 2. After the **2nd Bell** is rung at **2.35 p.m**. Remove the seal/staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options /choices) given under each question/statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE ANSWER SHEET IS AS SHOWN BELOW:

- 4. Please note that even a minute unintended ink dot on the answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR sheet.
- 5. Use the space provided on each page of the question booklet for Rough work. Do not use the OMR answer sheet for the same.
- 6. After the **last bell** is rung at **3.45 pm** stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR answer sheet to the room invigilator as it is.
- 8. After separating and retaining the top sheet, (UA copy) the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE week. For results, log on to the website www.uaes.in 5 days after the examination.

- 1. The resistance of a conducting wire is R. Resistance of another similar wire of twice the length and twice the diameter is
 - a) R b) 2R c) R/2 d) 4R
- 2. I-V graph for a metal at temperatures t_1 , t_2 , t_3 are given. Temperature are related as

a) $t_1 > t_2 > t_3$ b) $t_1 = t_2 = t_3$

- 3. A resistor is in the left gap and a (NTC) semiconductor is in the right gap of a matter bridge. Balancing length is noted (*l*). Both are heated so that change of resistance in them is the same. Now balancing length is
 - a) Equal to *l*

b) Greater than l

c) $t_3 > t_2 > t_1$

- c) Less than *l* d) Depends on temperature change
- 4. At the instant, when potentiometer is balanced, current
 - a) Flows in primary circuit only
 - b) Flows in secondary circuit only
 - c) Flows both in primary and secondary circuits
 - d) Does not flow in any circuit
- 5. A wire of resistance 5 ohms is stretched such that longitudinal strain is 200%. The new resistance in ohms is
 - a) 10 b) 25 c) 30

d) 45

d) $t_2 > t_1 > t_3$

- 6. There is a current of 0.2A in a copper wire of area of cross section 10^{-6} m². If the number of free electrons per unit volume is $8.4 \times 10^{28} m^{-3}$, then the drift speed of electron is about ($e = 1.6 \times 10^{-19}$ C)
 - a) $2 \times 10^{-5} m s^{-1}$ b) $1.5 \times 10^{-5} m s^{-1}$ c) $10^{-5} m s^{-1}$ d) $3 \times 10^{-5} m s^{-1}$
- 7. Two identical bulbs B1 and B2 are connected across 220V-50Hz ac source as shown.

- a) They glow with same brightness
- b) B₂ glows more brightly
- c) B_1 glows more brightly
- d) Only B_2 glows since capacitive reactance is infinite
- 8. To have large selectivity in a series LCR circuit
 - a) L should be large, R should be small b) Both L and R should be large
 - c) L should be small, R should be large d) Both L and R must be small
- 9. Force of attraction between two parallel current- carrying conductors is F Newton per meter. Current through each of them is doubled and reversed. New force in N/m between these conductor is

	,) Force of repulsion-4F	
	•	I) Force of repulsion-F/4	
10.	An ammeter has a resistance of 0.1Ω . It can read	d upto 5A. To convert thi	s into voltmeter to read
	100V, the resistance to be used is		
	a) 19.9 Ω in series b) 19.9 Ω in parallel c)		, ,
11.	A horizontal metal wire is to be prevented from fa	• • •	the wire carries current
	from North to South. Now external magnetic field		d) East
12	a) South b) North c) . The magnitude of magnetic force on a charge is z) West	d) East
12.	a) Charge is at rest		
	b) Charge is moving parallel to the field		
	c) Charge is moving perpendicular to the field		
	d) Both when charge is at rest or moving parallel	I to the field	
13.	Light corresponding to transition $n = 4$ to $n = 2$	2 in H atom falls on an	alkali metal with work
	function 1.9eV. maximum kinetic energy of photoe	-	
	, , , , , , , , , , , , , , , , , , , ,	;) 0.65	d) 2.55
14.	In a photocell experiment, a convex lens is used t		
	the lens is replaced by another lens of half the current will be	diameter but same foc	al length, photoelectric
		:) //8	d) <i>I</i> /16
		,) 110	0 0
15.	In a photo cell experiment, stopping potentials		OA and 5000A are
	obtained as 1.5V and 0.8V respectively. Work fun		
16	, , ,) 2.5eV	d) 3eV
16.	 In Thomson's experiment, to confirm the exister increased from the 1000V to 16000V. Radius 'F 		• •
	becomes	to a particular fing in	The dimaction pattern
		:) R/4	d) 4R
17.	. The power factor of an Ac circuit having resistan	· •	L) connected in series
	and an angular velocity ω is		
	a) R/ ωL b) R/ $(R^2 + \omega^2 L^2)^{1/2}$ c)		d) R/($R^2 - \omega^2 L^2$) ^{1/2}
18.	The resistance of coil is 10Ω and its resistance	e is also 10Ω. What is t	he peak current in the
	circuit when applied emf is 220V?		
40	a) 44 A b) $22\sqrt{2}$ A c)	,	d) $(22/\sqrt{2})A$
19.	. We wish to make a Plano convex lens of focal le		÷
	1.5. It is to be used in air. What should be the radia) 8cmb) 12cm) 16cm	d) 24cm
20	In interference pattern, the width of the dark fringe		
_0.		$\beta_1 = \beta_2$	d) $\beta_1 + 3\beta_2 = 1$
21.	In Somerfield's atomic model, corresponding to pr		, , , , , , , , , , , , , , , , , , , ,
) 3 circular orbits	
		 1 elliptical and 2 circula 	
22.	Force acting on an electron in a Bohr orbit with qu		
00		;) n ⁴	d) 1/n ⁴
23.	. The ratio of energies of H atom in its first to secon a) 1:4 b) 4:1 c	nd excited state is	d) 9:4
24	. Which is not true with respect to the Cathode rays	,	u) 9.4
27.) Charged particles	
	c) Move with speed same as that of light d	, e .	agnetic fields
25.	Radius of ${}_{13}Al^{27}$ nucleus (R ₀ = 1.2 Fermi) in units of	•	-
) 3.6	d) 4
26.	Activity of a radioactive sample reduces to 1/4	th of its original activity	A_0 in 12 years. After
	another 12 years activity would become		
	a) $A_0/2$ b) $A_0/8$ c)	/ -	d) A ₀ /32
27.	In Raman spectrum spectral lines having frequence	cies greater than incider	t frequency are called

	a) Rayleigh line		c) Anti-Stokes lines	<i>,</i> .	
28.	• • •	-	On passing through X me	ter of lead, it is reduced	
	to $I_0/8$. Thickness of lea	ad which will reduce it to	$(I_0/2)$ in meter is		
	a) X/2	b) X/3	c) X/8	d) X/4	
29.	Acceptor level in case	of p-type semiconductor	lies		
	a) Just below conduct	ion band	b) Just above valence ba	and	
	c) Much above condu	ction band	d) Much below valence b	band	
30.	Phase angle between i	nput and signals in a CE	amplifier in degree is		
	a) 0	b) 90	c) 180	d) 45	
31.	A constant force acts of	on two different masses	independently producing	acceleration a_1 and a_2 .	
	When the same force acts on their combined mass, the acceleration produced is				
	a) $a_1 + a_2$	b) $a_1 a_2$	C) $\frac{a_1 a_2}{a_1 + a_2}$	d) $\sqrt{a_1^2 + a_2^2}$	
00			1 2		
32.	32. Physical quantity which remains constant throughout the trajectory of a particle is				
	a) Momentumc) Horizontal componential	opt of volocity	b) Vertical component of	velocity	
33	<i>,</i> .	with velocity 100m/s at 3	d) energy 0^0 Time of flight is		
55.	a) 5s	b) 10s	c) 15s	d) 7.5s	
34.	,	,	acceleration 5m/s ² . After		
•			listance X in air under free		
	a) 375m	b) 80m	c) 500m	d) 750m	
35	,	vo suspended balls. The			
	a) Positions of balls re	-	b) Balls move towards ea	ach other	
	c) Balls move away fr		d) Balls starts spinning		
36.	Rise of the oil in the wi				
	a) Viscosity		c) Elasticity	d) Frictional force	
37.	, ,	,	-3t). X and Y are in m an	,	
	wave is	.,			
	a) 30m/s	b) 200m/s	c) 150m/s	d) 300m/s	
38.			n produce 34 beats in 10se		
	a) 333m/s	b) 300m/s	c) 320m/s	d) 343m/s	
39.		undamental frequency n	₀ . One end is closed. The	fundamental frequency	
	emitted now is				
	a) n ₀	b) $\frac{n_0}{2}$	c) Greater than $\frac{n_0}{2}$	d) Less than $\frac{n_0}{2}$	
40.			temperature T_1 and T_2 res		
			· · -	1 5,	
	r_2		4		
	power. Then $\frac{r_1}{r_2}$ must be a) $\left(\frac{T_1}{T_2}\right)^2$	b) $\left(\frac{T_2}{T}\right)^2$	C) $\left(\frac{T_1}{T_2}\right)^4$	d) $\left(\frac{T_2}{T_2}\right)^4$	
41	-	1	erature is doubled. The r	(11)	
	final volume is				
	a) 2	b) Greater than 2	c) Less than 1	d) Between 1 and 2	
42	Expansion of the Unive				
π۲.	a) Wien's law		c) Doppler effect	d) Kirchhoff's law	
13	,		n the slab is immersed in	-	
ч .	incident ray lateral shift			r a liquid, for the same	
	a) X	b) Greater than X	c) Less than X	d) Zero	
44.	,		media A, B, C respe		
			rnal reflection is possible		
	a) C to A	b) C to B	c) B to A	d) A to C	
45.	45. Two thin convex lenses each of focal length 0.5m are kept co-axially separated by a distance				
0.5m. Focal length of the combination is					
	a) 0.5m	b) 1m	c) 0.25m	d) 1.5m	

			_		
46.	46. Light incident on an equilateral prism of refractive index $\sqrt{2}$ suffers minimum angle of deviation.				
	-		f deviation are (in degree)		
	a) 45,30	b) 30,45	c) 45,45	d) 30,30	
47.	A plano convex lens is	s made of glass of refrac	tive index n and R is radiu	us of curvature of curved	
	surface. Its curved sur	face is silvered. It behav	ves as		
	a) Convex mirror of fo	2.0		210	
	c) Convex mirror of fo	ocal length $\frac{R}{2(n-1)}$	d) Concave mirror of for	cal length $\frac{R}{2(n-1)}$	
48.	. When a thin transparent plate of refractive index 1.5 is introduced in the path of one				
	•	•	is replaced by another pla	te of refractive index 1.6	
		, the number of fringes th	-		
	a) 20	b) 12	c) 6	d) 18	
49.			emitted when light of wave	elength 4000A is incident	
		ction 2eV (find approxim			
50	a) 0.5 eV	b) 1.1eV	- /		
50.			ly by light of $\lambda = 5000$ Å		
		-	Third dark band is at a dis	stance x form the central	
	maximum. <i>x</i> is approx a) 5mm	b) 10mm	c) 15mm	d) 20mm	
51			of a given light are under		
51.	a) Prism spectrum wi	• • •			
	c) Both are equal brig	•	d) Intensities of two spe	, u	
52.			araising angle suffers a d		
		slab in this case is (in de		J	
	a) 22	b) 34	c) 56	d) 12	
53.	,	,	quarter wave plate with o	,	
•••			it is passed through a rota		
	Nicol	, asker the enterging ligh			
	a) Does not alter		b) Varies between maxi	mum and zero	
	,	aximum and minimum	d) Will always be zero		
54	•	nature of radiation is use	· ·		
•	a) Interference		b) Diffraction		
	c) Polarisation		d) Photoelectron emissi	on	
55.		o an electric dipole varie	s with distance (r) as $E \propto$		
	a) 3	b) -3	c) 2	d) -2	
56.	A conducting sphere	of radius R has surface	∞ charge density σ . The	electric potential on its	
	surface is	V			
	a) $\frac{\sigma R}{\varepsilon_0}$	b) $\varepsilon_0 \sigma R$	C) $\frac{1}{\epsilon_0} \frac{R}{\sigma}$	d) $\frac{1}{\epsilon_0} \frac{\sigma}{R}$	
57.	ů l	of radius R carrving +Q is	s connected to an uncharg	-0	
		that flows between them	-	J	
	a) $\frac{q}{2}$	b) $\frac{Q}{2}$	C) $\frac{Q}{4}$	d) $\frac{2Q}{2}$	
58.	2	3	4	5	
50.	two groups are connected in series. The effective capacitance of the combination is				
	a) <i>nC</i>	b) $\frac{n^2 C}{(n^2+1)}$	C) $\frac{nC}{(n^2+1)}$	d) $\frac{(n^2+1)C}{n}$	
59.	Two air capacitors 5µ	F and 10µF, charged to	o 10V each are connecte	d in parallel. The space	
	between the 1 st capacitor is filled with a material of dielectric constant 3. Potential difference				
	across the capacitors becomes				
	a) 10V	b) 5V	c) 3V	d) 6V	
60.) are connected in series	s. The capacitance and	
	•	the combination will be			
	a) 10μF 100V	b) 2.4μF 100V	c) 2.4µF 200V	d) 10µF 200V	