

JNIVERSALACADEMY

Icon of Success and Excellence

MOCK CET - 2015

DATE	SUBJECT	TIME	
02.05.2015	MATHEMATICS	2.30 PM TO 3.40 PM	
MAXIMUM MARKS	TOTAL DURATION	MAXIMUM TIME FOR ANSWERING	
60	80 MINUTES	70 MINUTES	
MENTION YOUR	QUESTION BOOKLET DETAILS		
CET NUMBER	VERSION CODE	SERIAL NUMBER	
	B-3		

DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the Invigilator after 1st Bell i.e, after 2.30 p.m
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should be shaded completely.
- 5. Compulsory sign at the bottom portion of the OMR answer sheet in the space provided.

DONTs:

- 1. The timing and marks printed on the OMR answer sheet should not be damaged/mutilated/ spoiled.
- 2. The 2nd Bell rings at 2.35 p.m. till then,
 - Do not remove the seal/staple present on the right hand side of this question booklet.
 - Do not look inside this question booklet.
 - Do not start answering on the OMR answer sheet.

IMPORTANT INSTRUCTIONS TO CANDIDATES

- 1. This question booklet contains 60 questions and each question will have one statement and four distraction (four different options / choices).
- 2. After the **2nd Bell** is rung at **2.35 p.m**. Remove the seal/staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
 - Read each question carefully.
 - Choose the correct answer from out of the four available distracters (options /choices) given under each question/statement.
 - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the answer sheet.

CORRECT METHOD OF SHADING THE CIRCLE ON THE ANSWER SHEET IS AS SHOWN BELOW:

- 4. Please note that even a minute unintended ink dot on the answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR sheet.
- 5. Use the space provided on each page of the question booklet for Rough work. Do not use the OMR answer sheet for the same.
- 6. After the **last bell** is rung at **3.45 pm** stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR answer sheet to the room invigilator as it is.
- 8. After separating and retaining the top sheet, (UA copy) the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE week. For results, log on to the website www.uaes.in 5 days after the examination.

MATHEMATICS CET – 3

1.	If $f: R \to R$ is defined	by $f(x) = \frac{2x+1}{3}$ then $f(x) = \frac{2x+1}{3}$	$(r^{-1}(x)) =$	
	a) $\frac{x-3}{2}$	b) $\frac{3x-1}{2}$	c) $\frac{2x-1}{3}$	d) $\frac{x-4}{3}$
2.	If $f(x) = 2^x$ then $\frac{f(x+x)}{f(x-x)}$	(-3) = (-1)		
	a) f(1)	b) <i>f</i> (2)	c) <i>f</i> (3)	d) <i>f</i> (4)
3.	If $f(x+y) = f(x)f(y)$	and $f(5) = 32$ then $f(7)$	7)	
	a) 16	b) 32	c) 64	d) 128
4.	The domain of $f(x) = \sqrt{1 - 1}$	$\sqrt{25-x^2}$ is		
	a) (–5, 5)	b) [–5, 5]	c) $(-\infty,\infty)$	d) (5,∞)
5.	The value of $sin(cot^{-1}(co$	$\cos(\tan^{-1} x)))$ is		
	a) $\frac{x}{\sqrt{x^2+2}}$	b) $\sqrt{\frac{x^2+2}{x^2+1}}$	c) $\sqrt{\frac{x^2+1}{x^2+2}}$	d) $\frac{1}{\sqrt{x^2+1}}$
6.	The numerical value of	$\tan\left(2\tan^{-1}\frac{1}{5}-\frac{\pi}{4}\right)$ is		
	a) $-\frac{7}{17}$	17	c) $\frac{17}{7}$	d) $-\frac{17}{7}$
7.	If $\cos^{-1}\left(\frac{x}{a}\right) + \cos^{-1}\left(\frac{y}{b}\right) =$			
-	a) $\tan^2 \theta$.,	c) $\cos^2 \theta$	d) $\sin^2 \theta$
8.	If A is skew-symmetric i			
	a) skew-symmetric mac) unit matrix		b) symmetric matrix d) diagonal matrix	
9.	f Tr(A) = 8, Tr(B) = 6 th	en Tr(A – 2B) =	, 3	
	a) 4		c) –2	d) –4
10.	If $AB = A$ and $BA = B$ th a) $A = 2B$		c) $A^2 = A$ and $B^2 = B$	d = B
11.	If A is an non-singular n			u) A - B
	a) A	b) A ²	c) $ A ^{3}$	d) 4
12.	If the order of A is 4 x 3	, the order of B is 4 x 5 a	and the order of C is 7×3	then the order of $(A'B)'C'$ is
		b) 4 x 3	c) 3 x 7	d) 4 x 5
	$ \begin{vmatrix} (2^{x} + 2^{-x})^{2} & (2^{x} - 2^{-x})^{2} \\ (3^{x} + 3^{-x})^{2} & (3^{x} - 3^{-x})^{2} \\ (4^{x} + 4^{-x})^{2} & (4^{x} - 4^{-x})^{2} \end{vmatrix} $			
13.	$(3^{x} + 3^{x})^{2} (3^{x} - 3^{x})^{2}$			
	a) $(2^x + 2^{-x})^4$	b) $(3^x + 3^{-x})^4$	c) $(4^x + 4^{-x})^4$	d) 0
	$\begin{vmatrix} 0 & a-b & b-c \\ b-a & 0 & c-a \\ c-a & a-c & 0 \end{vmatrix}$ is			
14.	$\begin{vmatrix} b-a & 0 & c-a \end{vmatrix}$ is			
		b) a – b – c	c) 0	d) –1
15.	If $f(x) = \begin{cases} \frac{\log x}{x-1} & \text{if } x \neq \\ k & \text{if } x = \end{cases}$	$\frac{1}{1}$ is continuous at x = 1	then k =	

a) e b) 1 c) -1 d) 0
16. If
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 then at $x = 0$, the function is
a) continuous but not differentiable b) differentiable but not continuous
c) continuous and differentiable d) not continuous
c) continuous and differentiable d) not continuous
17. Let $f(x) = e^x, g(x) = \sin^{-1}x$ and $h(x) = f(g(x))$ then $\frac{h'(x)}{h(x)}$
a) $e^{\tan^2 x}$ b) $\sin^{-1} x$ c) $\frac{1}{\sqrt{x^2 - 1}}$ d) $\frac{1}{\sqrt{1 - x^2}}$
18. If $\sin y = x\sin(a + y)$, then $\frac{dy}{dx} =$
a) $\frac{\sin a}{\sin^2(a + y)}$ b) $\sin a \sin^2(a + y)$ c) $\frac{\sin^2(a + y)}{\sin a}$ d) $\frac{\sin y}{\sin^2(a + y)}$
19. $\frac{d}{dx} \left[\sin^2 \cot^{-1} \sqrt{\frac{1 + x}{1 - x}} \right] =$
a) $-\frac{1}{2}$ b) $\frac{1}{2}$ c) 2 d) -2
20. If the function $f(x) = x^3 + e^{\frac{x}{2}}$ and $g(x) = f^{-1}(x)$ then the value of $g(x) = f^{-1}(x)$ is
a) 1 b) $-\frac{1}{2}$ c) $\frac{1}{2}$ d) 2
21. A point on the parabola $y^2 = 18x$ at which the ordinate increases as twice the rate of the abscissa is
a) $\left(-\frac{9}{8}, \frac{9}{2}\right)$ b) $\left(\frac{9}{8}, \frac{9}{2}\right)$ c) $\left(\frac{9}{2}, \frac{9}{8}\right)$ d) $\left(\frac{9}{2}, -\frac{9}{8}\right)$
22. The equation of the normal to the curve $y^4 = ax^2$ at (a, a) is
a) $4x + 3y = 7a$ b) $4x - 3y = a$ c) $4x - 3y = 0$ d) $x + 2y = 3a$
23. The minimum value of $f(x) = \sin^2 x + \cos^4 x$ $0 \le x \le \frac{\pi}{2}$ is
a) $\frac{1}{4}$ b) $-\frac{1}{2}$ c) $\frac{1}{2}$ d) $-\frac{1}{4}$
24. If $f(x) = \frac{1}{x + 1}$, $\log(1 + x), x > 0$ then f is
a) a decreasing function
c) both increasing and decreasing function
c) both increasing function
c) both increasing function
c) both increasing function
c) both increasing function
c) $\sin x \log\left(\tan \frac{x}{2}\right + c$ d) none of these
26. $\int \frac{dx}{x(x^2 + 1)} =$
a) $\log\left(\frac{x^2}{x^2 + 1} + c$ b) $\log\left(\frac{x^2 + 1}{x^2} + c$ c) $\frac{1}{n}\log\left(\frac{x^2 + 1}{x^4} + c$ d) $\frac{1}{n}\log\left(\frac{x^2}{x^3 + 1}\right) + c$

27.
$$\int \frac{dx}{\cos t + \sqrt{3} \sin x} =$$
a) $\frac{1}{2} \log \tan \left(\frac{x}{2} + \frac{\pi}{12}\right) + c$
b) $\frac{1}{2} \log \tan \left(\frac{x}{2} - \frac{\pi}{12}\right) + c$
c) $\log \tan \left(\frac{x}{2} + \frac{\pi}{12}\right) + c$
d) $\log \tan \left(\frac{x}{2} - \frac{\pi}{12}\right) + c$
28. If $\int e^{x} (1+x) \sec^{x} (xe^{x}) dx = f(x) + c$ then $f(x) =$
a) $\sec(xe^{x}) + c$
b) $-\sec(xe^{x}) + c$
c) $\tan(xe^{x}) + c$
d) $\tan(e^{x}) + c$
29. $\int \frac{\pi}{4} (\sin^{10} x - \cos^{10} x) dx$
a) $\frac{1}{100}$
b) 100
c) $\frac{\pi}{100}$
d) 0
30. $\int \frac{\pi}{9} \log \left(\frac{1}{2}\right)$
b) $\frac{\pi}{8} \log 2$
c) $\frac{\pi}{4} \log \frac{1}{2}$
d) $\frac{\pi}{4} \log 2$
31. $\int [\sin(\log_{x}^{2}) + c$
b) $x \sin(\log_{x}^{2}) + c$
c) $\sin(\log_{x}^{2}) + c$
d) $\cos(\log_{x}^{2}) + c$
32. The area bounded by $y = x^{2} + 2$, $x - xax$, $x = 1$ and $x = 2$ is
a) $\frac{16}{3}$
b) $\frac{17}{3}$
c) $\frac{13}{3}$
d) $\frac{20}{3}$
33. The area enclosed between the curves $y = x^{2}$ and $x = ay^{2} (a > 0)$ is $\frac{4}{5}$
34. Area enclosed between the curves $y = x^{2}$ and $x = ay^{2} (a > 0)$ is $\frac{4}{5}$
35. Degree of the differential equation $\left(\frac{d^{2}y}{dx^{2}}\right)^{\frac{1}{2}} - y = 0$
a) $\frac{3}{4}$
b) $\frac{4}{3}$
c) 3
d) $\frac{4}{3}$
c) 3
d) $\sqrt{3}$
36. The idifferential equation $\left(\frac{d^{2}y}{dx}\right)^{\frac{1}{2}} - y = 0$
a) $\frac{3}{4}$
b) $\frac{4}{3}$
c) 3
d) $\frac{4}{3}$
d) $\frac{4}{3}$
37. The integrating factor of the differential equation $(x - x) + x = x(x - x)$
b) $\frac{1}{3}$
c) 3
d) $\sqrt{3}$
36. The idifferential equation $\left(\frac{d^{2}y}{dx}\right)^{\frac{1}{2}} - y = 0$
a) $\frac{3}{4}$
b) $\frac{4}{3}$
c) 3
d) $\frac{4}{3}$

	a) 1	b) 0	c) $\frac{1}{2}$	d) not defined	
40.	Let P(n) : "2" < (1 x 2 x 3 x x n) Then the smallest positive integer for which P(n) is true is				
	a) 1	b) 2	c) 3	d) 4	
41.	If $\left(\frac{1+i}{1-i}\right)^x = 1$, then x is	s (where n∈N)			
	a) 2n	b) 2n + 1	c) 4n	d) 4n + 1	
42.	The number of triangle in the same line is	s that are formed by cho	osing the vertices from a	set of 12 points, seven of which lie	
	a) 175	b) 185	c) 158	d) 220	
43.			$(x + a)^{51} - (x - a)^{51}$ after sin		
11	a) 26 The minimum value of	b) 25	c) 51	d) 102	
44.		the expression $3^{x} + 3^{1-x}$			
	a) 0	b) 3	c) $2\sqrt{3}$	d) $\frac{1}{3}$	
45.			the point (3, 2) and perpen		
10	a) x – y = 5	b) $x + y = 5$	c) $x + y = 1$	d) $x - y = 1$	
46.	a) 25	ntred at (1, 2) and passir b) 25π	c) 5	d) 5 <i>π</i>	
		0)201	0,0	4,57	
47.	$\lim_{x \to 0} \frac{\cos ecx - \cot x}{x}$ is				
	a) 1	b) –1	c) $\frac{1}{2}$	d) $-\frac{1}{2}$	
48.	The negation of the sta	atement "It is raining and	weather is cold" is		
48.	a) It is not raining or w	veather is not cold	b) It is not raining and we		
	a) It is not raining or wc) It is raining or weat	veather is not cold her is cold	b) It is not raining and wed) It is not raining or wea	ther is old	
	 a) It is not raining or w c) It is raining or weat A line makes angles α 	weather is not cold her is cold $, \beta, \gamma$ with the x, y and z	b) It is not raining and wed) It is not raining or weaaxes respectively then sin	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$	
49.	 a) It is not raining or w c) It is raining or weat A line makes angles α a) 1 	weather is not cold her is cold , β , γ with the x, y and z b) 2	 b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0	
49.	a) It is not raining or w c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$	weather is not cold her is cold , β , γ with the x, y and z b) 2	 b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$	
49. 50.	a) It is not raining or w c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is	weather is not cold her is cold , β , γ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0 gle ABC. The length of the median	
49. 50.	a) It is not raining or w c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is	weather is not cold her is cold , β , γ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0	
49. 50.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\vec{a}\vec{b}\vec{c}] = 2$ then $\frac{\vec{a} \cdot (\vec{b})}{(\vec{c} \times \vec{a})}$	weather is not cold her is cold , β , γ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times \vec{c}}{(\vec{b} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})}$	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0 gle ABC. The length of the median	
49. 50.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\vec{a}\vec{b}\vec{c}] = 2$ then $\frac{\vec{a} \cdot (\vec{b})}{(\vec{c} \times \vec{a})}$	weather is not cold her is cold , β , γ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times \vec{c}}{(\vec{b} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})}$	b) It is not raining and we d) It is not raining or weat axes respectively then sind c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} =	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0 gle ABC. The length of the median	
49. 50. 51.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = 2$ then $\frac{\overrightarrow{a}\cdot(\overrightarrow{b})}{(\overrightarrow{c}\times\overrightarrow{a})}$ a) 0	weather is not cold her is cold , β , γ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times \vec{c}}{\hat{i} \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})}$ b) 1	b) It is not raining and we d) It is not raining or weat axes respectively then sind c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$	
49. 50. 51.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\vec{a}\vec{b}\vec{c}] = 2$ then $\frac{\vec{a}\cdot(\vec{b})}{(\vec{c}\times\vec{a})}$ a) 0 The locus of the point	weather is not cold her is cold , β , γ with the x, y and z b) 2 b \hat{k} and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\overrightarrow{i} \cdot \overrightarrow{b} + \frac{\overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a})}{(\overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}} + \frac{\overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{c})}{(\overrightarrow{b} \times \overrightarrow{c})}$ b) 1 $(r \sin \alpha \cos \beta, r \cos \alpha \sin \beta)$	b) It is not raining and we d) It is not raining or weat axes respectively then sind c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$ d) 3 re variables and r is constant is	
49. 50. 51. 52.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = 2$ then $\frac{\overrightarrow{a} \cdot (\overrightarrow{b})}{(\overrightarrow{c} \times \overrightarrow{a})}$ a) 0 The locus of the point a) $x + y + z = r$ If the centroid of tetrah	weather is not cold her is cold , β , γ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times \vec{c}}{\hat{i} \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})}$ b) 1 ($r \sin \alpha \cos \beta$, $r \cos \alpha \sin \beta$) b) $x^2 + y^2 + z^2 = r^2$ redron 0ABC where A, E	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1 $\beta, r \sin \alpha$) where α, β, γ at c) $x^2 + y^2 + z^2 = r$ c, C are given by (a, 3, 3),	ther is old $n^2 \alpha + \sin^2 \beta + \sin^2 \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$ d) 3 re variables and r is constant is	
49. 50. 51. 52.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = 2$ then $\frac{\overrightarrow{a} \cdot (\overrightarrow{b})}{(\overrightarrow{c} \times \overrightarrow{a})}$ a) 0 The locus of the point a) $x + y + z = r$ If the centroid of tetrah	weather is not cold her is cold her is cold $,\beta,\gamma$ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times\vec{c}}{\hat{i}\cdot\vec{b}} + \frac{\vec{b}\cdot(\vec{c}\times\vec{a})}{(\vec{a}\times\vec{b})\cdot\vec{c}} + \frac{\vec{c}\cdot(\vec{a}\times\vec{c})}{(\vec{b}\times\vec{c})}$ b) 1 $(r\sin\alpha\cos\beta, r\cos\alpha\sin\beta)$ b) $x^2 + y^2 + z^2 = r^2$	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1 $\beta, r \sin \alpha$) where α, β, γ at c) $x^2 + y^2 + z^2 = r$ c, C are given by (a, 3, 3), is	ther is old $n^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$ d) 3 re variables and r is constant is d) x + y + z = r^{2}	
49. 50. 51. 52.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\vec{a}\vec{b}\vec{c}] = 2$ then $\frac{\vec{a}\cdot(\vec{b})}{(\vec{c}\times\vec{a})}$ a) 0 The locus of the point a) $x + y + z = r$ If the centroid of tetrah is (1, 2, -1) then distant	weather is not cold her is cold , β , γ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times \vec{c}}{\hat{i} \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})}$ b) 1 ($r \sin \alpha \cos \beta$, $r \cos \alpha \sin \beta$) b) $x^2 + y^2 + z^2 = r^2$ redron 0ABC where A, E	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1 $\beta, r \sin \alpha$) where α, β, γ at c) $x^2 + y^2 + z^2 = r$ c, C are given by (a, 3, 3),	ther is old $n^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$ d) 3 re variables and r is constant is d) x + y + z = r^{2}	
49. 50. 51. 52. 53.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\vec{a}\vec{b}\vec{c}] = 2$ then $\frac{\vec{a}\cdot(\vec{b})}{(\vec{c}\times\vec{a})}$ a) 0 The locus of the point a) $x + y + z = r$ If the centroid of tetrah is (1, 2, -1) then distant a) $\sqrt{107}$	weather is not cold her is cold , β , γ with the x, y and z b) 2 b \hat{k} and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times \vec{c}}{\hat{i} \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})}$ b) 1 ($r \sin \alpha \cos \beta, r \cos \alpha \sin \beta$) b) $x^2 + y^2 + z^2 = r^2$ nedron 0ABC where A, B ince p(a, b, c) from origin b) $\sqrt{14}$	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1 $\beta, r \sin \alpha$) where α, β, γ at c) $x^2 + y^2 + z^2 = r$ c, C are given by (a, 3, 3), is	ther is old $n^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$ d) 3 re variables and r is constant is d) x + y + z = r ² (1, b, 2) and (2, 1, c) respectively d) $\sqrt{13}$	
 49. 50. 51. 52. 53. 54. 	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\overrightarrow{a}\overrightarrow{b}\overrightarrow{c}] = 2$ then $\frac{\overrightarrow{a} \cdot (\overrightarrow{b})}{(\overrightarrow{c} \times \overrightarrow{a})}$ a) 0 The locus of the point \overrightarrow{a} a) $x + y + z = r$ If the centroid of tetrah is $(1, 2, -1)$ then distant a) $\sqrt{107}$ The foot of the perpend a) $(1, -4, 3)$	weather is not cold her is cold , β , γ with the x, y and z b) 2 b) 2 b) $\sqrt{18}$ $\frac{\times \vec{c}}{i} \cdot \vec{b} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{c})}{(\vec{b} \times \vec{c})}$ b) 1 ($r \sin \alpha \cos \beta$, $r \cos \alpha \sin \beta$) b) $x^2 + y^2 + z^2 = r^2$ nedron 0ABC where A, Ence p(a, b, c) from origin b) $\sqrt{14}$ dicular from the point (1, b) (-3, 2, 5)	b) It is not raining and we d) It is not raining or weat axes respectively then since c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1 $\beta, r \sin \alpha$) where α, β, γ at c) $x^2 + y^2 + z^2 = r$ b, C are given by (a, 3, 3), is c) $\sqrt{\frac{107}{14}}$ 3, 4) to the plane $2x - y + c$) (3, -2, 5)	ther is old $n^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$ d) 3 re variables and r is constant is d) x + y + z = r ² (1, b, 2) and (2, 1, c) respectively d) $\sqrt{13}$	
49. 50. 51. 52. 53.	a) It is not raining or we c) It is raining or weat A line makes angles α a) 1 The vector $\overrightarrow{AB} = 3\hat{i} + 4$ through A is a) $\sqrt{72}$ If $[\overrightarrow{ab}\overrightarrow{c}] = 2$ then $\frac{\overrightarrow{a} \cdot (\overrightarrow{b})}{(\overrightarrow{c} \times \overrightarrow{a})}$ a) 0 The locus of the point \overrightarrow{a} a) x + y + z = r If the centroid of tetrah- is (1, 2, -1) then distant a) $\sqrt{107}$ The foot of the perpend a) (1, -4, 3) The optimal value of the	weather is not cold her is cold her is cold $,\beta,\gamma$ with the x, y and z b) 2 $k\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} + 2\hat{j} + 4\hat{k}$ b) $\sqrt{18}$ $\frac{\times\vec{c}}{\hat{i}\cdot\vec{b}} + \frac{\vec{b}\cdot(\vec{c}\times\vec{a})}{(\vec{a}\times\vec{b})\cdot\vec{c}} + \frac{\vec{c}\cdot(\vec{a}\times\vec{c})}{(\vec{b}\times\vec{c})}$ b) 1 $(r\sin\alpha\cos\beta, r\cos\alpha\sin\beta)$ b) x ² + y ² + z ² = r2 hedron 0ABC where A, B here p(a, b, c) from origin b) $\sqrt{14}$ dicular from the point (1,	b) It is not raining and we d) It is not raining or weat axes respectively then sin c) -1 \hat{k} are the sides of a triang c) $\sqrt{33}$ \vec{b} = c) -1 $\beta, r \sin \alpha$) where α, β, γ at c) $x^2 + y^2 + z^2 = r$ c) $x^2 + y^2 + z^2 = r$ c) $\sqrt{\frac{107}{14}}$ 3, 4) to the plane $2x - y + c$) $(3, -2, 5)$ tained at the points	ther is old $n^{2} \alpha + \sin^{2} \beta + \sin^{2} \gamma =$ d) 0 gle ABC. The length of the median d) $\sqrt{288}$ d) 3 re variables and r is constant is d) x + y + z = r ² (1, b, 2) and (2, 1, c) respectively d) $\sqrt{13}$ e z + 3 = 0 is	

- b) Intersections of the inequalities with axes only
- c) corner points of the feasible region
- d) None of these

56.		y the inequation $x \ge 0, y$		d) fourth quadrant
	a) first quadrant	b) second quadrant	c) third quadrant 5	d) fourth quadrant (R)
57.	If A and B are two events such that $P(A) = \frac{3}{8} P(A) = \frac{5}{8}$ and $P(A \cup B) = \frac{3}{4}$, then $P\left(\frac{B}{A'}\right) =$			$=\frac{3}{4}$, then $P\left(\frac{B}{A'}\right) =$
	a) $\frac{2}{5}$	b) $\frac{3}{5}$	c) $\frac{4}{5}$	d) $\frac{1}{5}$
58.	A bag contains 3 red,	4 white and 7 black balls	s the probability of drawing	a red or a black ball is
	a) $\frac{2}{7}$	b) $\frac{3}{7}$	c) $\frac{4}{7}$	d) $\frac{5}{7}$
59.	A and B are two events	s such that $P(A) = 0.4 P(A)$	$(A \cup B) = 0.7$ if A and B are	independent then P(B)
60	a) 0.3	b) 0.4	c) 0.5	c) 0.7
60.	he selected the winnin		or norses at random and	bets on them. The probability that
	a) $\frac{1}{2}$	b) $\frac{2}{5}$	c) $\frac{3}{5}$	d) $\frac{4}{5}$
	2	5	5	5
			C	
		× ·		