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MATHEMATICS CET – 3  
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a) 16 b) 32 c) 64 d) 128 
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a) 2tan  b) 2cot  c) 2cos  d) 2sin  
8. If A is skew-symmetric matrix and n is even positive integer then An is 

a) skew-symmetric matrix b) symmetric matrix 
c)   unit matrix  d) diagonal matrix 

9. If Tr(A) = 8, Tr(B) = 6 then Tr(A – 2B) = 
a) 4 b) 2 c) –2 d) –4 

10. If AB = A and BA = B then 
a) A = 2B b) B = 2A c) A2 = A and B2 = B d) A = B 

11. If A is an non-singular matrix of order 3 x 3 then |adj A| = 
a) |A| b) |A|2 c) |A|3 d) 4 

12. If the order of A is 4 x 3, the order of B is 4 x 5 and the order of C is 7 x 3 then the order of CBA  )(  is 
a) 5 x 7 b) 4 x 3 c) 3 x 7 d) 4 x 5 
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a) e b) 1 c) –1 d) 0 
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xxf  then at x = 0, the function is 

a) continuous but not differentiable b) differentiable but not continuous 
c)   continuous and differentiable d) not continuous 
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21. A point on the parabola y2 = 18x at which the ordinate increases as twice the rate of the abscissa is 
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22. The equation of the normal to the curve y4 = ax3 at (a, a) is 
a) 4x + 3y = 7a b) 4x – 3y = a c) 4x – 3y = 0 d) x + 2y = 3a 
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a) a decreasing function b) an increasing function 
c)   both increasing and decreasing function d) neither increasing nor decreasing function 
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32. The area bounded by y = x2 + 2, 
x-axis, x = 1 and x = 2 is 
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33. The area enclosed between the curves y = x3 and and y = x  is 
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34. Area enclosed between the curves y = ax2 and x = ay2 (a > 0) is 1sq.units then a = 

a) 
3
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 c) 3 d) 3  

35. Degree of the differential equation 0
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36. The differential equation cx
dx
dyy   represents 

a) a family of hyperbolas b) a family of ellipses 
c)   a family of circles whose centres on x-axis d) a family of circles whose centres on y-axis 

37. The integrating factor of the differential equation 1sincos  xy
dx
dy

is 

a) xtan  b) xcot  c) xsec  d) xcos  
38. If A and B are two sets then )( BAA   = 

a)   b) A c) B d) BA  
39. The value of tan1O tan2O….. tan89O is 



 

 

a) 1 b) 0 c) 
2
1

 d) not defined 

40. Let P(n) : “2” < (1 x 2 x 3 x ….. x n) Then the smallest positive integer for which P(n) is true is 
a) 1 b) 2 c) 3 d) 4 

41. If 1
1
1









 x
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, then x is (where nN) 

a) 2n b) 2n + 1 c) 4n d) 4n + 1 
42. The number of triangles that are formed by choosing the vertices from a set of 12 points, seven of which lie 

in the same line is 
a) 175 b) 185 c) 158 d) 220 

43. The total number of terms in the expansion of (x + a)51 – (x – a)51 after simplification is 
a) 26 b) 25 c) 51 d) 102 

44. The minimum value of the expression 3x + 31 – x, xR is 

a) 0 b) 3 c) 2 3  d) 
3
1

 

45. The equation of the straight line passing through the point (3, 2) and perpendicular to the line y = x is 
a) x – y = 5 b) x + y = 5 c) x + y = 1 d) x – y = 1 

46. The area of a circle centred at (1, 2) and passing through (4, 6) is 
a) 25 b) 25  c) 5 d) 5  

47. 
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48. The negation of the statement “It is raining and weather is cold” is 
a) It is not raining or weather is not cold b) It is not raining and weather is not cold 
c)   It is raining or weather is cold d) It is not raining or weather is old 

49. A line makes angles  ,,  with the x, y and z axes respectively then  222 sinsinsin  = 
a) 1 b) 2 c) –1 d) 0 

50. The vector kiAB ˆ4ˆ3   and kjiAC ˆ4ˆ2ˆ5   are the sides of a triangle ABC. The length of the median 
through A is 

a) 72  b) 18  c) 33  d) 288  
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 = 

a) 0 b) 1 c) –1 d) 3 
52. The locus of the point )sin,sincos,cossin(  rrr  where  ,, are variables and r is constant is 

a) x + y + z = r b) x2 + y2 + z2 = r2 c) x2 + y2 + z2 = r d) x + y + z = r2 
53. If the centroid of tetrahedron 0ABC where A, B, C are given by (a, 3, 3), (1, b, 2) and (2, 1, c) respectively 

is (1, 2, –1) then distance p(a, b, c) from origin is 

a) 107  b) 14  c) 
14

107
 d) 13  

54. The foot of the perpendicular from the point (1, 3, 4) to the plane 2x – y + z + 3 = 0 is 
a) (1, – 4, 3) b) (– 3, 2, 5) c) (3, –2, 5) d) (–1, 4, 3) 

55. The optimal value of the objective function is attained at the points 
a) Intersections of the inequalities with x-axis only 
b) Intersections of the inequalities with axes only 
c) corner points of the feasible region 
d) None of these 



 

 

56. Region represented by the inequation 0,0  yx  is 
a) first quadrant b) second quadrant c) third quadrant d) fourth quadrant 

57. If A and B are two events such that 
8
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8
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4
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58. A bag contains 3 red, 4 white and 7 black balls the probability of drawing a red or a black ball is 

a) 
7
2

 b) 
7
3

 c) 
7
4

 d) 
7
5

 

59. A and B are two events such that P(A) = 0.4 P(AB) = 0.7 if A and B are independent then P(B) 
a) 0.3 b) 0.4 c) 0.5 c) 0.7 

60. Five horses are in a race. A person selects 2 of horses at random and bets on them. The probability that 
he selected the winning horse is 

a) 
2
1

 b) 
5
2

 c) 
5
3

 d) 
5
4

                           

 


