

# **MOCK CET - 2015**

| DATE          | SUBJECT        | TIME                       |  |  |
|---------------|----------------|----------------------------|--|--|
| 01.05.2015    | CHEMISTRY      | 3.50 PM TO 5.00 PM         |  |  |
| MAXIMUM MARKS | TOTAL DURATION | MAXIMUM TIME FOR ANSWERING |  |  |
| 60            | 80 MINUTES     | 70 MINUTES                 |  |  |
| MENTION YOUR  | QUESTIO        | N BOOKLET DETAILS          |  |  |
| CET NUMBER    | VERSION CODE   | SERIAL NUMBER              |  |  |
|               | D-3            |                            |  |  |

### DOs:

- 1. Check whether the CET No. has been entered and shaded in the respective circles on the OMR answer sheet.
- 2. This Question Booklet is issued to you by the Invigilator after 1st Bell i.e, after 3.45 p.m
- 3. The Serial Number of this question booklet should be entered on the OMR answer sheet.
- 4. The Version Code of this question booklet should be entered on the OMR answer sheet and the respective circles should be shaded completely.
- 5. Compulsory sign at the bottom portion of the OMR answer sheet in the space provided.

#### DONTs:

- 1. The timing and marks printed on the OMR answer sheet should not be damaged/mutilated/ spoiled.
- 2. The 2<sup>nd</sup> Bell rings at 3.50 p.m. till then,
  - Do not remove the seal/staple present on the right hand side of this question booklet.
  - Do not look inside this question booklet.
  - Do not start answering on the OMR answer sheet.

## **IMPORTANT INSTRUCTIONS TO CANDIDATES**

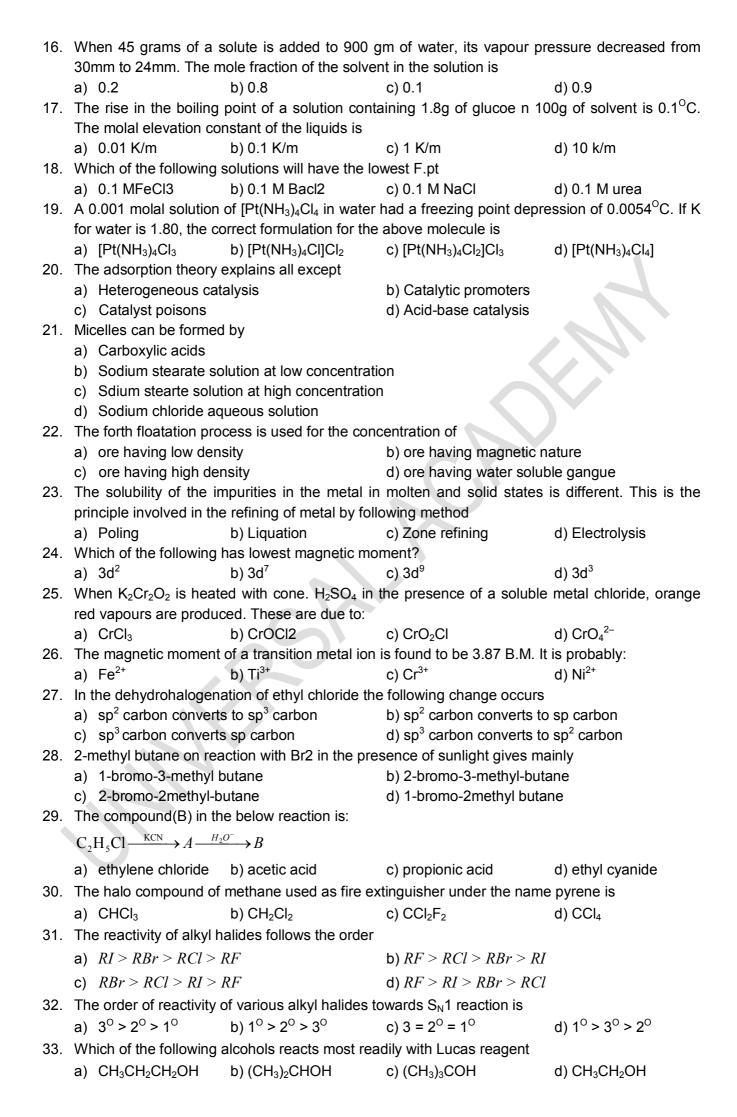
- 1. This question booklet contains 60 questions and each question will have one statement and four distraction (four different options / choices).
- 2. After the **2<sup>nd</sup> Bell** is rung at **3.50 p.m**. Remove the seal/staple present on the right hand side of this question booklet and start answering on the OMR answer sheet.
- 3. During the subsequent 70 minutes:
  - Read each question carefully.
  - Choose the correct answer from out of the four available distracters (options /choices) given under each question/statement.
  - Completely darken / shade the relevant circle with a BLUE OR BLACK INK BALLPOINT PEN against the question number on the answer sheet.

## CORRECT METHOD OF SHADING THE CIRCLE ON THE ANSWER SHEET IS AS SHOWN BELOW:

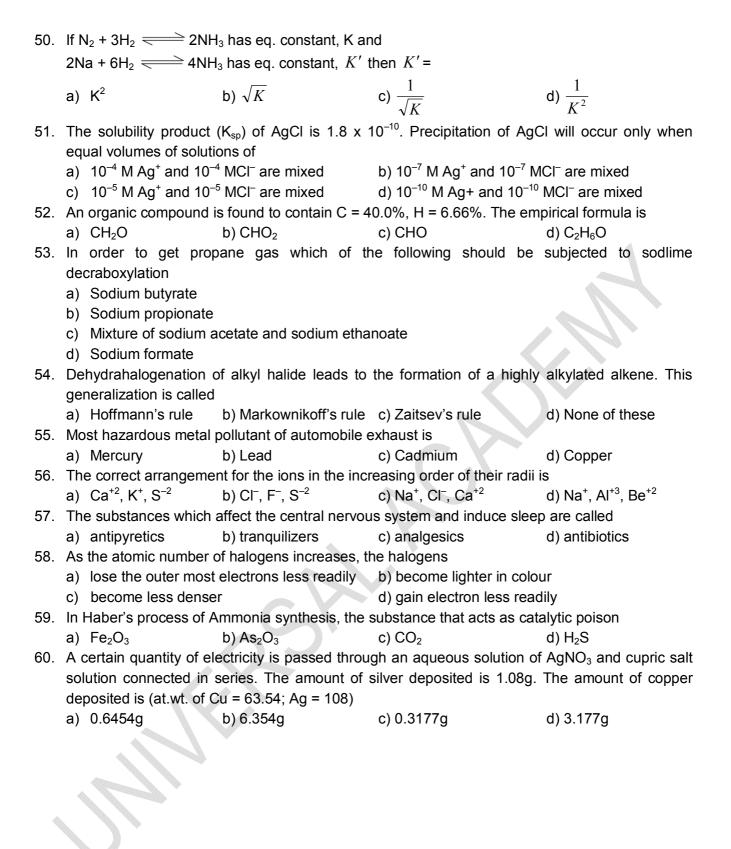


- 4. Please note that even a minute unintended ink dot on the answer sheet will also be recognized and recorded by the scanner. Therefore, avoid multiple markings of any kind on the OMR sheet.
- 5. Use the space provided on each page of the question booklet for Rough work. Do not use the OMR answer sheet for the same.
- 6. After the **last bell** is rung at **5.00 pm** stop writing on the OMR answer sheet and affix your LEFT HAND THUMB IMPRESSION on the OMR answer sheet as per the instructions.
- 7. Hand over the OMR answer sheet to the room invigilator as it is.
- 8. After separating and retaining the top sheet, (UA copy) the invigilator will return the bottom sheet replica (candidate's copy) to you to carry home for self evaluation.
- 9. Preserve the replica of the OMR answer sheet for a minimum period of ONE week. For results, log on to the website www.uaes.in 5 days after the examination.

# **CHEMISTRY CET - 3**


| 1.  | In which reactants are source?                                                                                                                                                                     | not contained within the                                     | e cell but are continuously                                     | y supplied from external                                    |  |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
|     | a) Fuel cell                                                                                                                                                                                       | b) Dry cell                                                  | c) Lithium battery                                              | d) Lead storage battery                                     |  |  |  |  |  |  |
| 2.  | In Leclanche cell, Zinc                                                                                                                                                                            | •                                                            |                                                                 |                                                             |  |  |  |  |  |  |
|     |                                                                                                                                                                                                    |                                                              | c) 30% NH₄CI                                                    |                                                             |  |  |  |  |  |  |
| 3.  | The equivalent conductionization of CH <sub>3</sub> COOH                                                                                                                                           |                                                              | acid is 1.162 x 10 <sup>-3</sup> ohm                            | <sup>-1</sup> mol <sup>-1</sup> m <sup>2</sup> . percentage |  |  |  |  |  |  |
|     | $(\lambda_{H+} = 349.83  ohm^{-1}  \lambda_{CH_3COO^-} = 40.89  ohm^{-1})$                                                                                                                         |                                                              |                                                                 |                                                             |  |  |  |  |  |  |
|     | a) 1                                                                                                                                                                                               | b) 2                                                         | c) 3                                                            | d) 4                                                        |  |  |  |  |  |  |
| 4.  | bivalent metal was dep                                                                                                                                                                             | osited at the cathode                                        | electrode reaction when                                         |                                                             |  |  |  |  |  |  |
|     | a) $9.65 \times 10^{23}$                                                                                                                                                                           |                                                              | c) 12.04 x 10 <sup>23</sup>                                     | -                                                           |  |  |  |  |  |  |
| 5.  | •                                                                                                                                                                                                  | reen the reaction time are sing through origin for the       | nd which of the following o<br>e first order reaction           | concentration term gives                                    |  |  |  |  |  |  |
|     | a) log x                                                                                                                                                                                           | b) — 1                                                       | c) $\log \frac{a}{a-x}$                                         | d)                                                          |  |  |  |  |  |  |
|     | a, log x                                                                                                                                                                                           | (a-x)                                                        | a-x                                                             | $(a-x)^2$                                                   |  |  |  |  |  |  |
| 6.  | _                                                                                                                                                                                                  | _                                                            | he rest among the followin c) activation energy                 | T                                                           |  |  |  |  |  |  |
| 7.  | For which of the follow                                                                                                                                                                            | ing reactions k <sub>310</sub> /k <sub>300</sub> wo          | ould be maximum                                                 |                                                             |  |  |  |  |  |  |
|     | a) A + B $\rightarrow$ C; E <sub>a</sub> = 5                                                                                                                                                       | 0kJ                                                          | b) $X + Y \rightarrow Z$ ; $E_a = 60kJ$                         | J                                                           |  |  |  |  |  |  |
|     | c) $P + Q \rightarrow R$ ; $E_a = 6$                                                                                                                                                               | 60kJ                                                         | d) E + F $\rightarrow$ G; E <sub>a</sub> = 100l                 | kJ                                                          |  |  |  |  |  |  |
| 8.  | What is the unit for rate rate = $k[A]^{3/2}[B]^{-1}$                                                                                                                                              | e constant k of a reaction                                   | n which has a rate express                                      | sion?                                                       |  |  |  |  |  |  |
|     | a) $\frac{3}{2}$                                                                                                                                                                                   | b) $\frac{1}{2}$                                             | c) zero                                                         | d) none of these                                            |  |  |  |  |  |  |
|     | $\frac{a}{2}$                                                                                                                                                                                      | $\frac{5}{2}$                                                | C) 2610                                                         | d) Holle of these                                           |  |  |  |  |  |  |
| 9.  |                                                                                                                                                                                                    |                                                              | re 200K is 10times less the ction? (R = Gas constant)           | nan the rate constant at                                    |  |  |  |  |  |  |
|     | a) 1842.4R                                                                                                                                                                                         | b) 921.2R                                                    | c) 460.6                                                        | d) 230.3R                                                   |  |  |  |  |  |  |
| 10. | rate of reaction is 4 $\times$                                                                                                                                                                     | 10 <sup>-6</sup> mole L <sup>-1</sup> S <sup>-1</sup> when o | centration of reactant is in concentration of the reacta        |                                                             |  |  |  |  |  |  |
|     | the rate constant of the a) $2 \times 10^{-4}$ mole $^{1/2}$ L <sup>-1</sup>                                                                                                                       |                                                              | b) 1 x 10 <sup>-2</sup> S <sup>-1</sup>                         |                                                             |  |  |  |  |  |  |
|     | c) $2 \times 10^{-2} \text{ mole}^{-1/2} \text{ L}^1$                                                                                                                                              |                                                              | d) 25 mole <sup>-1/2</sup> Lmin <sup>-1</sup>                   |                                                             |  |  |  |  |  |  |
| 11  | •                                                                                                                                                                                                  |                                                              | I could have least density                                      |                                                             |  |  |  |  |  |  |
| ٠   | a) BCC                                                                                                                                                                                             | b) CCP                                                       | c) HCP                                                          | d) None                                                     |  |  |  |  |  |  |
| 12. |                                                                                                                                                                                                    | lume occupied by the at                                      | ,                                                               | u) . 10.110                                                 |  |  |  |  |  |  |
|     | $\pi$                                                                                                                                                                                              | b) $\sqrt{2} \frac{\pi}{8}$                                  | $\frac{1}{2}\pi$                                                | $\pi$                                                       |  |  |  |  |  |  |
|     | a) $\frac{\pi}{4}$                                                                                                                                                                                 | b) $\sqrt{2} = \frac{8}{8}$                                  | c) $\sqrt{2}\frac{\pi}{6}$                                      | d) $\frac{\pi}{6}$                                          |  |  |  |  |  |  |
| 13. | Body diagonal of a cub                                                                                                                                                                             | oe in 866 pm. Its edge le                                    | ngth would be                                                   |                                                             |  |  |  |  |  |  |
|     | a) 408 pm                                                                                                                                                                                          | b) 1000 pm                                                   | c) 500 pm                                                       | d) 600 pm                                                   |  |  |  |  |  |  |
| 14. | In an oxidation redu                                                                                                                                                                               | ction reaction, dichrom                                      | nate (Cr <sub>2</sub> O <sub>7</sub> <sup>-2</sup> ) ion is red | uced to Cr+3 ion. The                                       |  |  |  |  |  |  |
|     |                                                                                                                                                                                                    | Cr <sub>2</sub> O <sub>7</sub> in this reaction is           |                                                                 |                                                             |  |  |  |  |  |  |
|     | •                                                                                                                                                                                                  |                                                              |                                                                 | Molecularweight                                             |  |  |  |  |  |  |
|     | a) 3                                                                                                                                                                                               | b) — 6                                                       | c) Molecularweight 1                                            | d) $\frac{1}{2}$                                            |  |  |  |  |  |  |
| 15  |                                                                                                                                                                                                    |                                                              |                                                                 |                                                             |  |  |  |  |  |  |
| ٠٥. | A solution is obtained by dissolving 12g of urea (Mol.wt. = 60) in a litre of solution. Anoth solution is prepared by dissolving 68.4 gof cane sugar (Mol.wt. = 342) in a litre of solution at the |                                                              |                                                                 |                                                             |  |  |  |  |  |  |
|     | • •                                                                                                                                                                                                | •                                                            | essure in the first solution is                                 |                                                             |  |  |  |  |  |  |
|     | same ichiicidilie. 110                                                                                                                                                                             | vvemiu vi valiuli () E                                       | วงนเซาเบเเซาแอเ อับเนเบท ใ                                      | 3                                                           |  |  |  |  |  |  |

b) same as the that of second solution


d) nearly one fifth of the second solution

a) nearly 5 times that of the second solution

c) double that of second solution



| 34. | Exc                                                                                          | cess of C               | 2H5OH at                | : 140 <sup>0</sup> C r | eacts                              | s with conc.                            | H <sub>2</sub> SO <sub>4</sub> , then con | mpound foi          | rmed is                                                                   |
|-----|----------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------|------------------------------------|-----------------------------------------|-------------------------------------------|---------------------|---------------------------------------------------------------------------|
|     | a)                                                                                           | Diethyl e               | ether                   |                        |                                    |                                         | b) Diethyl sulp                           | hate                |                                                                           |
|     | c)                                                                                           | Ethylene                | е                       |                        |                                    |                                         | d) Ethylene hy                            | /drogen su          | lphate                                                                    |
| 35. | 5. The solvent used in Etard's reaction during the formation of benzaldehyde from toluene is |                         |                         |                        |                                    |                                         |                                           | e from toluene is   |                                                                           |
|     | a)                                                                                           | acetic a                | cid                     | b) wa                  | ter                                |                                         | c) liq.NH3                                |                     | d) CS <sub>2</sub>                                                        |
| 36. | Ma                                                                                           | tch the fo              | ollowing                |                        |                                    |                                         |                                           |                     |                                                                           |
|     | A)                                                                                           | Grigna                  | rd reagen               | t                      | 1)                                 | H <sub>2</sub> /Pd – Ba                 | aSO <sub>4</sub>                          |                     |                                                                           |
|     | B) Clemmenson reduction 2) N                                                                 |                         |                         |                        | N <sub>2</sub> H <sub>4</sub> /KOH | /CH <sub>2</sub> OH – CH <sub>2</sub> O | Н                                         |                     |                                                                           |
|     | C)                                                                                           | Roseni                  | mund's re               | duction                | 3)                                 | $CH_3MgX$                               |                                           |                     |                                                                           |
|     | D) Wolf-Kishner reduction                                                                    |                         |                         | 4)                     | ) Zn – Hg/Conc.HCl                 |                                         |                                           |                     |                                                                           |
|     |                                                                                              |                         |                         |                        | 5)                                 | H <sub>2</sub> /Ni                      |                                           |                     |                                                                           |
|     |                                                                                              | Α                       | В                       | С                      | D                                  |                                         |                                           |                     |                                                                           |
|     | a)                                                                                           | 3                       | 4                       | 2                      | 1                                  |                                         |                                           |                     |                                                                           |
|     | b)                                                                                           | 3                       | 4                       | 1                      | 2                                  |                                         |                                           |                     |                                                                           |
|     | c)                                                                                           | 2                       | 1                       | 4                      | 5                                  |                                         |                                           |                     |                                                                           |
|     | d)                                                                                           | 5                       | 3                       | 2                      | 1                                  |                                         |                                           |                     |                                                                           |
| 37. | . Haloform reaction is not given by                                                          |                         |                         |                        |                                    |                                         |                                           |                     |                                                                           |
|     | ,                                                                                            | CH <sub>3</sub> CO      | ū                       | ,                      | -                                  | $C_2H_5$                                | , –                                       | - ///               | d) CH₃CHOHCH₃                                                             |
| 38. |                                                                                              |                         |                         | can be r               | epla                               | ced by H ato                            | om on reaction w                          | vith                |                                                                           |
|     | •                                                                                            | Zn + HC                 |                         | b) H <sub>2</sub>      |                                    |                                         | c) Soda lime                              |                     | d) Br <sub>2</sub> + dil.NaOH                                             |
| 39. |                                                                                              |                         | _                       |                        |                                    | •                                       | thyl amines and                           |                     |                                                                           |
|     |                                                                                              |                         |                         |                        |                                    | $H_5)_3N$                               |                                           | N                   |                                                                           |
|     | -                                                                                            | -                       |                         |                        | -                                  | •                                       |                                           |                     | $C_2H_5NH_2>NH_3$                                                         |
| 40. |                                                                                              |                         |                         | _                      | -                                  |                                         | bundant in natur                          | e?                  |                                                                           |
|     | ,                                                                                            | Glucose                 |                         | b) Fru                 | ıctos                              | е                                       | c) Starch                                 |                     | d) Cellulose                                                              |
| 41. |                                                                                              |                         | of rubber i             |                        |                                    |                                         | _                                         |                     |                                                                           |
|     | ,                                                                                            | Isoprene                |                         | b) Ne                  | •                                  |                                         | c) Gutta perch                            | na                  | d) Glyptal                                                                |
| 42. |                                                                                              |                         |                         |                        |                                    | esponds to                              | V                                         |                     |                                                                           |
|     | a) 1.2 x 10 <sup>22</sup> molecules of methane b) 0.5 mole of methane                        |                         |                         |                        |                                    |                                         |                                           |                     |                                                                           |
| 40  | ,                                                                                            | U                       | methane                 |                        |                                    | 6 11                                    | d) 0.1 mole of                            |                     | (07)                                                                      |
| 43. |                                                                                              |                         |                         |                        |                                    |                                         | termost electron                          |                     |                                                                           |
|     | a)                                                                                           | 5, 0, 0, -              | $+\frac{1}{2}$          | b) 4, 3                | 3, 2,                              | $\frac{1}{2}$                           | c) 5, 1, 0, $-\frac{1}{2}$                |                     | d) 5, 1, 1, $+\frac{1}{2}$                                                |
| 44. | The                                                                                          | e ionizati              | on energy               | of the e               | leme                               | ent is a mea                            | sure of                                   |                     |                                                                           |
|     | a)                                                                                           | the pow                 | er of an a              | tom to at              | ttract                             | the shared                              | pair in a molecu                          | ıle                 |                                                                           |
|     | b)                                                                                           | the ener                | gy requir               | ed to ren              | nove                               | the most lo                             | osely bound elec                          | ctron from t        | the gaseous atom                                                          |
|     | -                                                                                            | 4                       |                         |                        |                                    | rms uninega                             | ative ion                                 |                     |                                                                           |
|     | - 1                                                                                          |                         |                         |                        | •                                  | hydration                               |                                           |                     |                                                                           |
| 45. |                                                                                              |                         |                         | -                      |                                    | -                                       | ents the collection                       |                     | =                                                                         |
|     | a)                                                                                           | K⁻, Ca²⁻                | , Sc <sup>ot</sup> , Cl | b) Na                  | ⁻, Ma                              | a²་, Al³་, Cl¯                          | c) K⁻, Cl⁻, Mgʻ                           | f, Sc <sup>ot</sup> | d) Na <sup>+</sup> , Ca <sup>2+</sup> , Sc <sup>3+</sup> , F <sup>-</sup> |
| 46. |                                                                                              |                         |                         |                        |                                    | -                                       | e highest occupie                         |                     |                                                                           |
|     | •                                                                                            | $\sigma$ MO c           |                         |                        |                                    |                                         |                                           |                     | d) $\sigma^*$ MO orbital                                                  |
| 47. | nitr                                                                                         | ogen at 2               |                         | which th               | e r.m                              | n.s. velocity                           | of carbon diox                            | ide becom           | es the same as that of                                                    |
|     | a)                                                                                           | 462°C                   |                         | b) 273                 | 3 K                                |                                         | c) 189 <sup>o</sup> C                     |                     | d) 546 K                                                                  |
| 48. |                                                                                              |                         | _                       | -                      |                                    | D <sub>2</sub> at 47°C?                 |                                           |                     |                                                                           |
|     | -                                                                                            |                         | $0^2 J$                 | b) 2.2                 | 24 x 1                             | $0^2$ J                                 | c) 1.24 x 10 <sup>2</sup> c               | J                   | d) None of these                                                          |
| 49. |                                                                                              | the read                |                         |                        |                                    |                                         |                                           |                     |                                                                           |
|     | 2H <sub>3</sub>                                                                              | $_{3}(g) \rightarrow N$ | $I_2(g) + 3H$           |                        |                                    |                                         | ng statement is o                         | orrect?             |                                                                           |
|     | a)                                                                                           | $\Delta H = \Delta$     | ΛE                      | b) ΔH                  | $\exists \Delta$                   | ΣE                                      | c) $\Delta H > \Delta E$                  |                     | d) $\Delta H = 0$                                                         |

